Bme Studies of Stochastic Differential Equations

نویسندگان

  • M. L. Serre
  • G. Christakos
چکیده

Classical Geostatistics methods have been designed to use mainly statistical knowledge about natural variables and they lack the ability to incorporate important forms of knowledge like physical laws and scientific theories into the mapping process. On the other hand, the powerful and versatile Bayesian maximum entropy (BME) method of Modern Geostatistics can accomplish such a task, rigorously and efficiently. In this work, BME is used to incorporate the Darcy law of subsurface hydrology in the spatial mapping of a hydraulic head field. The hydraulic map thus obtained is physically meaningful as well as numerically more accurate than that obtained using classical methods (e.g., kriging). Moreover, taking advantage of the Darcy law the BME hydraulic head mapping can involve other related soil properties, like hydraulic conductivity. The approach leads to very accurate hydraulic head solutions, and may be also applied to study the inverse problem, in which one seeks to estimate hydraulic conductivity from hydraulic head measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bme Studies of Stochastic Differential Equations Representing Physical Laws -part I

An important feature of the Bayesian maximum entropy (BME) approach is that it can incorporate physical laws. Within the BME epistemic framework, these laws constitute general knowledge. Analysis at the prior BME stage is conditioned by these laws. The BME analysis also includes an integration stage during which solutions are conditioned by case-specific data (measurements, uncertain observatio...

متن کامل

Viii. Bme Studies of Stochastic Differential Equations Representing Physical Law

A wide variety of natural processes are described using physical laws. A physical law may be expressed by means of an algebraic equation or a differential equation governing the physical process. Classical methods of Geostatistics have been designed to use mainly statistical knowledge about natural variables and they lack the ability to incorporate physical laws in the mapping analysis. On the ...

متن کامل

Application of DJ method to Ito stochastic differential equations

‎This paper develops iterative method described by [V‎. ‎Daftardar-Gejji‎, ‎H‎. ‎Jafari‎, ‎An iterative method for solving nonlinear functional equations‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎316 (2006) 753-763] to solve Ito stochastic differential equations‎. ‎The convergence of the method for Ito stochastic differential equations is assessed‎. ‎To verify efficiency of method‎, ‎some examples are ex...

متن کامل

Stochastic differential equations and integrating factor

The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999